Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Interface Focus ; 14(2): 20230048, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618230

RESUMEN

Leafcutter ant colonies are divided into castes with the individuals performing different tasks, based mostly on size. With the mandibles, the small minims care for the brood or the fungus, whereas the larger minors and mediae cut and transport plant material, with the ant size positively related to the material size. The mechanical properties and composition of the mandible cuticle have been previously tested in the soldiers as the largest caste, revealing that the cutting edges contained high contents of the cross-linking transition metal zinc (Zn). With regard to the smaller castes, no data are present. To study how the mandible size and function relates to its mechanical properties, we here tested the mandibles of minims, minors and mediae by nanoindentation. We found that the hardness (H) and Young's modulus (E) values increased with increasing ant size and that the mandible cutting edges in each caste have the highest H- and E-values. To gain insight into the origins of these properties, we characterized the elemental composition by energy-dispersive X-ray analysis, revealing that minors and mediae possessed higher content of Zn in the cutting edges in contrast to the minims containing significantly less Zn. This shows, that Zn content relates to higher mechanical property values. Additionally, it shows that all of these parameters can differ within a single species.

2.
Interface Focus ; 14(2): 20230056, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618235

RESUMEN

Mandible morphology has an essential role in biting performance, but the mandible cuticle can have regional differences in its mechanical properties. The effects of such a heterogeneous distribution of cuticle material properties in the mandible responses to biting loading are still poorly explored in chewing insects. Here, we tested the mechanical properties of mandibles of the ant species Formica cunicularia by nanoindentation and investigated the effects of the cuticular variation in Young's modulus (E) under bite loading with finite-element analysis (FEA). The masticatory margin of the mandible, which interacts with the food, was the hardest and stiffest region. To unravel the origins of the mechanical property gradients, we characterized the elemental composition by energy-dispersive X-ray spectroscopy. The masticatory margin possessed high proportions of Cu and Zn. When incorporated into the FEA, variation in E effectively changed mandible stress patterns, leading to a relatively higher concentration of stresses in the stiffer mandibular regions and leaving the softer mandible blade with relatively lower stress. Our results demonstrated the relevance of cuticle E heterogeneity in mandibles under bite loading, suggesting that the accumulation of transition metals such as Cu and Zn has a relevant correlation with the mechanical characteristics in F. cunicularia mandibles.

3.
Interface Focus ; 14(2): 20230082, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618237

RESUMEN

Radular teeth have to cope with wear, when interacting with ingesta. In some molluscan taxa, wear-coping mechanisms, related to the incorporation of high contents of iron or silica, have been previously determined. For most species, particularly for those which possess radulae without such incorporations, wear-coping mechanisms are understudied. In the present study, we documented and characterized the wear on radular teeth in the model species Loligo vulgaris (Cephalopoda). By applying a range of methods, the elementary composition and mechanical properties of the teeth were described, to gain insight into mechanisms for coping with abrasion. It was found that the tooth regions that are prone to wear are harder and stiffer. Additionally, the surfaces interacting with the ingesta possessed a thin coating with high contents of silicon, probably reducing abrasion. The here presented data may serve as an example of systematic study of radular wear, in order to understand the relationship between the structure of radular teeth and their properties.

4.
Sci Rep ; 14(1): 4695, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409429

RESUMEN

Insect feeding structures, such as mandibles, interact with the ingesta (food or/and substrate) and can be adapted in morphology, composition of material and mechanical properties. The foraging on abrasive ingesta, as on algae covering rocks, is particularly challenging because the mandibles will be prone to wear and structural failure, thus suggesting the presence of mandibular adaptations to accompany this feeding behavior. Adaptations to this are well studied in the mouthparts of molluscs and sea urchins, but for insects there are large gaps in our knowledge. In this study, we investigated the mandibles of a grazing insect, the larvae of the trichopteran Glossosoma boltoni. Using scanning electron microscopy, wear was documented on the mandibles. The highest degree was identified on the medial surface of the sharp mandible tip. Using nanoindentation, the mechanical properties, such as hardness and Young's modulus, of the medial and lateral mandible cuticles were tested. We found, that the medial cuticle of the tip was significantly softer and more flexible than the lateral one. These findings indicate that a self-sharpening mechanism is present in the mandibles of this species, since the softer medial cuticle is probably abraded faster than the harder lateral one, leading to sharp mandible tips. To investigate the origins of these properties, we visualized the degree of tanning by confocal laser scanning microscopy. The autofluorescence signal related to the mechanical property gradients. The presence of transition and alkaline earth metals by energy dispersive X-ray spectroscopy was also tested. We found Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Si, and Zn in the cuticle, but the content was very low and did not correlate with the mechanical property values.


Asunto(s)
Holometabola , Insectos , Animales , Larva , Microscopía Electrónica de Rastreo , Mandíbula/anatomía & histología
5.
Front Zool ; 20(1): 37, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037029

RESUMEN

Suckermouth armoured catfish (Loricariidae) are a highly speciose and diverse freshwater fish family, which bear upper and lower lips forming an oral disc. Its hierarchical organisation allows the attachment to various natural surfaces. The discs can possess papillae of different shapes, which are supplemented, in many taxa, by small horny projections, i.e. unculi. Although these attachment structures and their working mechanisms, which include adhesion and interlocking, are rather well investigated in some selected species, the loricariid oral disc is unfortunately understudied in the majority of species, especially with regard to comparative aspects of the diverse oral structures and their relationship to the ecology of different species. In the present paper, we investigated the papilla and unculi morphologies in 67 loricariid species, which inhabit different currents and substrates. We determined four papilla types and eight unculi types differing by forms and sizes. Ancestral state reconstructions strongly suggest convergent evolution of traits. There is no obvious correlation between habitat shifts and the evolution of specific character states. From handling the structures and from drying artefacts we could infer some information about their material properties. This, together with their shape, enabled us to carefully propose hypotheses about mechanisms of interactions of oral disc structures with natural substrates typical for respective fish species.

6.
J Chem Phys ; 159(18)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37955324

RESUMEN

Gastropods forage with their radula, a thin chitinous membrane with embedded teeth, which scratch across the substrate to lose food particles. During this interaction, the risk of loosening particles is obvious without having a specialized mechanism holding them on the tooth surface. As mucus secretions are essential in molluscan life cycles and the locomotion and attachment gels are known to have an instant high adhesion, we have hypothesized that the saliva could support particle retention during feeding. As adhesion of snail saliva was not studied before, we present here an experimental setup to test its particle-binding capacity using a large land snail (Lissachatina fulica, Stylommatophora, Heterobranchia). This experiment was also applied to the gels produced by the snail foot for comparison and can be potentially applied to various fluids present at a small volume in the future. We found, that the saliva has high particle retention capacity that is comparable to the foot glue of the snail. To gain some insight into the properties of the saliva, we additionally studied it in the scanning electron microscope, estimated its viscosity in a de-wetting experiment, and investigated its elemental composition using energy dispersive X-ray spectroscopy reveling higher contents of Ca, Zn and other potential cross-linkers similar to those found in the glue.


Asunto(s)
Alimentos , Saliva , Geles
7.
Ecol Evol ; 13(8): e10332, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37589038

RESUMEN

The molluscan feeding structure is the radula, a chitinous membrane with teeth, which are highly adapted to the food and the substrate to which the food is attached. In Polyplacophora and Patellogastropoda, the handling of hard ingesta can be facilitated by high content of chemical compounds containing Fe or Si in the tooth cusps. Other taxa, however, possess teeth that are less mineralized, even though animals have to avoid structural failure or high wear during feeding as well. Here, we investigated the gastropod Gastropteron rubrum, feeding on hard Foraminifera, diatoms and Porifera. Tooth morphologies and wear were documented by scanning electron microscopy and their mechanical properties were tested by nanoindentation. We determined that gradients of hard- and stiffness run along each tooth, decreasing from cusp to basis. We also found that inner lateral teeth were harder and stiffer than the outer ones. These findings allowed us to propose hypotheses about the radula-ingesta interaction. In search for the origins of the gradients, teeth were visualized using confocal laser scanning microscopy, to determine the degree of tanning, and analyzed with energy-dispersive X-ray spectroscopy, to test the elemental composition. We found that the mechanical gradients did not have their origins in the elemental content, as the teeth did not contain high proportions of metals or other minerals. This indicates that their origin might be the degree of tanning. However, in the tooth surfaces that interact with the ingesta high Si and Ca contents were determined, which is likely an adaptation to reduce wear.

8.
Beilstein J Nanotechnol ; 14: 603-615, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228744

RESUMEN

Suspension feeding via setae collecting particles is common within Crustacea. Even though the mechanisms behind it and the structures themselves have been studied for decades, the interplay between the different setae types and the parameters contributing to their particle collecting capacities remain partly enigmatic. Here, we provide a numerical modeling approach to understand the relationship among the mechanical property gradients, the mechanical behavior and the adhesion of setae, and the feeding efficiency of the system. In this context, we set-up a simple dynamic numerical model that takes all of these parameters into account and describes the interaction with food particles and their delivery into the mouth opening. By altering the parameters, it was unraveled that the system performs best when the long and short setae have different mechanical properties and different degrees of adhesion since the long setae generate the feeding current and the short ones establish the contact with the particle. This protocol can be applied to any system in the future as the parameters (i.e., properties and arrangement of particles and setae) can be easily altered. This will shed light on the biomechanical adaptations of these structures to suspension feeding and provide inspiration for biomimetics in the field of filtration technologies.

9.
J R Soc Interface ; 20(202): 20220927, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37221862

RESUMEN

Molluscs forage with their radula, a chitinous membrane with teeth. Adaptations to hard or abrasive ingesta were well studied in Polyplacophora and Patellogastropoda, but for other taxa there are large gaps in knowledge. Here, we investigated the nudibranch gastropods Felimare picta and Doris pseudoargus, both of which feed on Porifera. Tooth morphologies were documented by scanning electron microscopy, and mechanical properties were tested by nanoindentation. We found that these parameters are rather similar in both species, indicating that teeth are similar in their function. To study the composition, teeth were visualized using confocal laser scanning microscopy (CLSM), to determine the degree of tanning, and analysed with energy-dispersive X-ray spectroscopy, to test the elemental composition. The emitted autofluorescence signal and the inorganic content differed between the species. This was especially prominent when studying the inner and outer tooth surfaces (leading and trailing edges). In F. picta, we detected high proportions of Si, whereas teeth of D. pseudoargus contained high amounts of Ca, which influenced the autofluorescence signal in CLSM. Employing nanoindentation, we determined high Young's modulus and hardness values for the leading edges of teeth, which relate to the Si and Ca content. This highlights that teeth with a similar morphology and mechanical properties can be mechanically enhanced via different chemical pathways in Nudibranchia.


Asunto(s)
Gastrópodos , Hepatophyta , Poríferos , Animales , Moluscos , Adaptación Psicológica , Aclimatación
10.
Naturwissenschaften ; 109(6): 58, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454372

RESUMEN

The molluscan phylum is characterized by the radula, used for the gathering and processing of food. This structure can consist of a chitinous membrane with embedded rows of teeth, which show structural, chemical, and biomechanical adaptations to the preferred ingesta. With regard to the chemical composition of teeth, some taxa (Polyplacophora and Patellogastropoda) were extensively studied, and high proportions of incorporated iron, calcium, and silicon were previously reported. However, outside these two groups, there is an immense lack of knowledge about the elemental composition of radular teeth. The here presented work aims at shedding some light on the radular composition by performing energy-dispersive X-ray spectroscopy (EDX) on six non-patelliform gastropod species (Anentome helena, Cornu aspersum, Lavigeria nassa, Littorina littorea, Reymondia horei, and Vittina turrita), with the focus on the ontogeny of the elemental composition. Proportions of elements, which are not part of chitin and other purely organic molecules, were documented for overall 1027 individual teeth of all ontogenetic radular stages, i.e., for the building zone, the maturation zone, and the working zone. We detected that the proportions of these elements increased from the building to the maturation zone. However, from the maturation to the working zone, two general trends are visible: either the proportions of the elements increased or decreased. The latter trend could potentially be explained by the acidic pH of the gastropod saliva, which awaits further investigations.


Asunto(s)
Gastrópodos , Animales , Aclimatación , Calcio
11.
Naturwissenschaften ; 109(6): 52, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322292

RESUMEN

The radula, a chitinous membrane spiked with teeth, is the molluscan autapomorphy for the gathering and processing of food. The teeth, as actual interfaces between the organism and the ingesta, act as load transmitting regions and have to withstand high stresses during foraging - without structural failure or high degrees of wear. Mechanisms contributing to this were studied previously in paludomid gastropods from Lake Tanganyika. For some species, gradients in hardness and Young's modulus along the teeth were detected, enabling the bending and relying of teeth onto the next row, distributing the stresses more equally. The here presented study on one of them - Lavigeria grandis - aims at shedding light on the origin of these functional gradients. The mechanical properties were identified by nanoindentation technique and compared to the elemental composition, determined by elemental dispersive X-ray spectroscopy (EDX, EDS). This was done for the complete radular (mature and immature tooth rows), resulting in overall 236 EDX and 700 nanoindentation measurements. Even though teeth showed regional differences in elemental composition, we could not correlate the mechanical gradients with the elemental proportions. By applying confocal laser scanning microscopy (CLSM), we were finally able to relate the mechanical properties with the degree of tanning. CLSM is a common technique used on arthropod cuticle, but was never applied on radular teeth before. In general, we found that nanoindentation and CLSM techniques complement one another, as for example, CLSM is capable of revealing heterogeneities in material or micro-gradients, which leads to a better understanding of the functionalities of biological materials and structures.


Asunto(s)
Gastrópodos , Diente , Animales , Dureza , Módulo de Elasticidad
12.
Sci Rep ; 12(1): 17799, 2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274188

RESUMEN

The gastric mill of Decapoda is a unique feature, which comprises teeth, stabilizing ossicles, and particle sorting setae. Involved in the fragmentation and sorting of the food, this structure serves as interface between the organism and its environment. As material properties complement morphology and hold information about function and trophic preferences, we here provide a basis for more comparative research on gastric mills. For gastric mill components of the adult red swamp crayfish Procambarus clarkii, we studied (a) the micro-structure via scanning electron microscopy, (b) the elemental composition by energy-dispersive X-ray spectroscopy, (c) the heterogeneities in material properties and degree of tanning (autofluorescence) by confocal laser scanning microscopy, and (d) the mechanical properties hardness and elasticity by nanoindentation technique. The morphology and micro-structure were previously described for this species, but the mechanical properties and the autofluorescence were not studied before. As epicuticle and exocuticle could be analyzed individually, material property gradients, with values decreasing from the interacting surface towards interior, could be determined. Finally, we were able to relate the mechanical property data with the elemental composition and the degree of tanning. We found that the epicuticle of the teeth is among the hardest and stiffest biological materials in invertebrates due to the incorporations of high proportions of silicon.


Asunto(s)
Astacoidea , Molleja No Aviar , Animales , Silicio , Sensilos
13.
Philos Trans A Math Phys Eng Sci ; 380(2232): 20210335, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35909353

RESUMEN

Most molluscan taxa forage with their radula, a chitinous membrane with embedded teeth. The teeth are the actual interfaces between the animal and its ingesta and serve as load-transmitting regions. During foraging, these structures have to withstand high stresses without structural failure and without a high degree of wear. Mechanisms contributing to this failure- and wear-resistance were well studied in the heavily mineralized teeth of Polyplacophora and Patellogastropoda, but for the rather chitinous teeth of non-limpet snails, we are confronted with a large gap in data. The work presented here on the paludomid gastropod Lavigeria grandis aims to shed some light on radular tooth composition and its contribution to failure- and wear-prevention in this type of radula. The teeth were fractured and the micro-cracks studied in detail by scanning electron microscopy, revealing layers within the teeth. Two layers of distinct fibre densities and orientations were detected, covered by a thin layer containing high proportions of calcium and silicon, as determined by elemental dispersive X-ray spectroscopy. Our results clearly demonstrate the presence of failure- and wear-prevention mechanisms in snail radulae without the involvement of heavy mineralization-rendering this an example of a highly functional biological lightweight structure. This article is part of the theme issue 'Nanocracks in nature and industry'.


Asunto(s)
Gastrópodos , Poliplacóforos , Diente , Animales , Microscopía Electrónica de Rastreo , Diente/química
14.
Front Zool ; 19(1): 19, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690761

RESUMEN

BACKGROUND: The radula, a chitinous membrane with embedded teeth, is one important molluscan autapomorphy. In some taxa (Polyplacophora and Patellogastropoda) one tooth type (the dominant lateral tooth) was studied intensively in the last decades with regard to its mechanical properties, chemical and structural composition, and the relationship between these parameters. As the dominant lateral tooth is probably one of the best studied biological materials, it is surprising, that data on elements and mechanical properties of the other tooth types, present on a chiton radula, is lacking. RESULTS: We provide data on the elemental distribution and mechanical properties (hardness and elasticity, i.e. Young's modulus) of all teeth from the Polyplacophora Lepidochitona cinerea (Linnaeus, 1767) [Chitonidae: Ischnochitonidae]. The ontogeny of elements, studied by energy-dispersive X-ray spectroscopy, and of the mechanical properties, determined by nanoindentation, was analysed in every individual tooth type. Additionally, we performed breaking stress experiments with teeth under dry and wet condition, highlighting the high influence of the water content on the mechanical behaviour of the radula. We thereby could determine the forces and stresses, teeth can resist, which were previously not studied in representatives of Polyplacophora. Overall, we were able to relate the mineral (iron, calcium) content with the mechanical parameters (hardness and Young's modulus) and the breaking force and stress in every tooth type. This led to a better understanding of the relationship between structure, material, and function in radular teeth. Further, we aimed at determining the role of calcium for the mechanical behaviour of the teeth: we decalcified radulae by ethylene diamine tetra acetic acid and performed afterwards elemental analyses, breaking stress experiments, and nanoindentation. Among other things, we detected that wet and decalcified radular teeth could resist highest forces, since teeth have a higher range of bending motion leading to a higher capability of teeth to gain mechanical support from the adjacent tooth row. This indicates, that the tooth material is the result of a compromise between failure reduction and the ability to transfer forces onto the ingesta. CONCLUSION: We present novel data on the elemental composition, mechanical properties, and the mechanical behaviour of chiton teeth, which allows conclusions about tooth function. We could also relate the parameters mentioned, which contributes to our understanding on the origins of mechanical property gradients and the processes reducing structural failure in radular teeth. Additionally, we add more evidence, that the elemental composition of radular is probably species-specific and could be used as taxonomic character.

15.
Sci Rep ; 12(1): 7499, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525838

RESUMEN

The molluscan phylum is the second specious animal group with its taxa feeding on a variety of food sources. This is enabled by the radula, a chitinous membrane with embedded teeth, one important autapomorphy. Between species, radulae can vary in their morphology, mechanical, and chemical properties. With regard to chemical composition, some taxa (Polyplacophora and Patellogastropoda) were studied extensively in the past decades, due to their specificity to incorporate high proportions of iron, calcium, and silicon. There is, however, a huge lack of knowledge about radular composition in other taxa. The work presented aims at shedding light on the chemistry by performing energy-dispersive X-ray spectroscopy analyses on 24 molluscan species, thereof two Polyplacophora, two Cephalopoda, and 20 Gastropoda, which was never done before in such a comprehensiveness. The elements and their proportions were documented for 1448 individual, mature teeth and hypotheses about potential biomineralization types were proposed. The presented work additionally comprises a detailed record on past studies about the chemical composition of molluscan teeth, which is an important basis for further investigation of the radular chemistry. The found disparity in elements detected, in their distribution and proportions highlights the diversity of evolutionary solutions, as it depicts multiple biomineralization types present within Mollusca.


Asunto(s)
Gastrópodos , Hepatophyta , Poliplacóforos , Diente , Animales , Evolución Biológica , Gastrópodos/anatomía & histología , Moluscos/anatomía & histología , Diente/anatomía & histología
16.
Sci Rep ; 11(1): 22775, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815469

RESUMEN

The radula, a chitinous membrane with embedded tooth rows, is the molluscan autapomorphy for feeding. The morphologies, arrangements and mechanical properties of teeth can vary between taxa, which is usually interpreted as adaptation to food. In previous studies, we proposed about trophic and other functional specialisations in taenioglossan radulae from species of African paludomid gastropods. These were based on the analysis of shape, material properties, force-resistance, and the mechanical behaviour of teeth, when interacting with an obstacle. The latter was previously simulated for one species (Spekia zonata) by the finite-element-analysis (FEA) and, for more species, observed in experiments. In the here presented work we test the previous hypotheses by applying the FEA on 3D modelled radulae, with incorporated material properties, from three additional paludomid species. These species forage either on algae attached to rocks (Lavigeria grandis), covering sand (Cleopatra johnstoni), or attached to plant surface and covering sand (Bridouxia grandidieriana). Since the analysed radulae vary greatly in their general size (e.g. width) and size of teeth between species, we additionally aimed at relating the simulated stress and strain distributions with the tooth sizes by altering the force/volume. For this purpose, we also included S. zonata again in the present study. Our FEA results show that smaller radulae are more affected by stress and strain than larger ones, when each tooth is loaded with the same force. However, the results are not fully in congruence with results from the previous breaking stress experiments, indicating that besides the parameter size, more mechanisms leading to reduced stress/strain must be present in radulae.


Asunto(s)
Análisis de Elementos Finitos/estadística & datos numéricos , Gastrópodos/anatomía & histología , Gastrópodos/fisiología , Estrés Mecánico , Diente/anatomía & histología , Diente/fisiología , Animales , Estado Nutricional
17.
J R Soc Interface ; 18(182): 20210377, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34520692

RESUMEN

The radula is the structure used for food processing in Mollusca. It can consist of a membrane with stiffer teeth, which is, together with alary processus, muscles and odontophoral cartilages, part of the buccal mass. In malacology, it is common practice to infer potential tooth functions from morphology. Thus, past approaches to explain functional principles are mainly hypothesis driven. Therefore, there is an urgent need for a workflow testing hypotheses on the function of teeth and buccal mass components and interaction of structures, which can contribute to understanding the structure as a whole. Here, in a non-conventional approach, we introduce a physical and dynamic radular model, based on morphological data of Spekia zonata (Gastropoda, Paludomidae). Structures were documented, computer-modelled, three-dimensional-printed and assembled to gather a simplistic but realistic physical and dynamic radular model. Such a bioinspired design enabled studying of radular kinematics and interaction of parts when underlain supporting structures were manipulated in a similar manner as could result from muscle contractions. The presented work is a first step to provide a constructional manual, paving the way for even more realistic physical radular models, which could be used for understanding radular functional morphology and for the development of novel gripping devices.


Asunto(s)
Gastrópodos , Hepatophyta , Diente , Animales , Fenómenos Biomecánicos , Moluscos
18.
Acta Biomater ; 135: 458-472, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34358696

RESUMEN

The molluscan radula, a thin membrane with embedded rows of teeth, is the structure for food processing and gathering. For proper functioning, radular failures must be either avoided or reduced when interacting with the preferred food, as this might be of high significance for the individual fitness. Thus, the analysis of structural failure in radular teeth could be included in studies on trophic specializations. Here, we tested the failure of non-mineralized, chitinous radular teeth from taxa, belonging to an African paludomid species flock from Lake Tanganyika and surrounding river systems. These species are of high interest for evolutionary biologists since they represent a potential result of an adaptive radiation including trophic specialisations to distinct substrates, the food is attached to. In a biomechanical experiment a shear load was applied to tooth cusps with a force transducer connected to a motorized stage until structural failure occurred. Subsequently broken areas were measured and breaking stress was calculated. As the experiments were carried out under dry and wet conditions, the high influence of the water content on the forces, teeth were capable to resist, could be documented. Wet teeth were able to resist higher forces, because of their increased flexibility and the flexibility of the embedding membrane, which enabled them either to slip away or to gain support from adjacent teeth. This mechanism can be understood as collective effect reducing structural failure without the mineralisation with wear-minimizing elements, as described for Polyplacophora and Patellogastropoda. Since the documented mechanical behaviour of radular teeth and the maximal forces, teeth resist, can directly be related to the gastropod ecological niche, both are here identified as an adaptation to preferred feeding substrates. STATEMENT OF SIGNIFICANCE: The radula, a chitinous membrane with teeth, is the molluscan feeding structure. Here we add onto existing knowledge about the relationship between tooth's mechanical properties and species' ecology by determining the tooth failure resistance. Six paludomid species (Gastropoda) of a prominent species flock from Lake Tanganyika, foraging on distinct feeding substrates, were tested. With a force transducer wet and dry teeth were broken, revealing the high influence of water content on mechanical behaviour and force resistance of teeth. Higher forces were needed to break wet radulae due to an increased flexibility of teeth and membrane, which resulted in an interlocking or twisting of teeth. Mechanical behaviour and force resistance were both identified as trophic adaptations to feeding substrate.


Asunto(s)
Gastrópodos , Diente , Animales , Evolución Biológica , Ecosistema , Agua
19.
Acta Biomater ; 134: 513-530, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34329785

RESUMEN

Biological tissues may exhibit graded heterogeneities in structure and mechanical properties that are crucial to their function. One biological structure that shows variation in both structure and function is the molluscan radula: the organ comprises a chitinous membrane with embedded teeth and serves to process and gather food. The tooth morphologies had been well studied in the last decades, but the mechanical properties of the teeth are not known for the vast majority of molluscs. This knowledge gap restricts our understanding of how the radula is able to act effectively on a target surface whilst simultaneously resisting structural failure. Here we employed nanoindentation technique to measure mechanical properties (hardness and Young's modulus) on distinct localities of individual radular teeth from 24 species of African paludomid gastropods. These species have distinct ecological niches as they forage on algae on different feeding substrates. A gradual distribution of measured properties along the teeth was found in species foraging on solid or mixed feeding substrates, but soft substrate feeders exhibit teeth almost homogeneous in their biomechanical properties. The presence or absence of large-scale gradients in these taenioglossan teeth could directly be linked with their specific function and in general with the species ecology, whereas the radular tooth morphologies do not always and fully reflect ecology. STATEMENT OF SIGNIFICANCE: African Lake Tanganyika is well known for harbouring endemic and morphologically distinct genera. Its paludomid gastropods form a flock of high interest because of its diversity. As they show distinct radular tooth morphologies hypotheses about potential trophic specializations had always been at hand. Here we evaluated the mechanical properties Young's modulus and hardness of 9027 individual teeth from 24 species along the tooth by nanoindentation and related them with the gastropods' specific feeding substrate. We find that hard substrate feeders have teeth that are hard at the tips but much less stiff at the base and thus heterogeneous with respect to material properties, whereas soft substrate feeders have teeth that are flexible and homogenous with respect to material properties.


Asunto(s)
Estructuras Animales/anatomía & histología , Gastrópodos , Animales , Ecosistema , Módulo de Elasticidad , Gastrópodos/anatomía & histología
20.
Sci Rep ; 11(1): 9556, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953284

RESUMEN

The radula is the food gathering and processing structure and one important autapomorphy of the Mollusca. It is composed of a chitinous membrane with small, embedded teeth representing the interface between the organism and its ingesta. In the past, various approaches aimed at connecting the tooth morphologies, which can be highly distinct even within single radulae, to their functionality. However, conclusions from the literature were mainly drawn from analyzing mounted radulae, even though the configuration of the radula during foraging is not necessarily the same as in mounted specimens. Thus, the truly interacting radular parts and teeth, including 3D architecture of this complex structure during foraging were not previously determined. Here we present an experimental approach on individuals of Vittina turrita (Neritidae, Gastropoda), which were fed with algae paste attached to different sandpaper types. By comparing these radulae to radulae from control group, sandpaper-induced tooth wear patterns were identified and both area and volume loss could be quantified. In addition to the exact contact area of each tooth, conclusions about the 3D position of teeth and radular bending during feeding motion could be drawn. Furthermore, hypotheses about specific tooth functions could be put forward. These feeding experiments under controlled conditions were introduced for stylommatophoran gastropods with isodont radulae and are now applied to heterodont and complex radulae, which may provide a good basis for future studies on radula functional morphology.


Asunto(s)
Gastrópodos/anatomía & histología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Fenómenos Biomecánicos , Conducta Alimentaria , Gastrópodos/fisiología , Gastrópodos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...